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THE USE OF A TWO-DEGREES-OF-FREEDOM GYROSCOPE 

AS A SATELLITE YAW SENSOR 

SUMMARY 

The ability of a two-degrees-of-freedom gyroscope to indicate yaw attitude 
in an orbiting earth-pointed vehicle is evaluated. The gyro is first studied as 
a separate orbiting unit under the influence of gimbal angle damping and torqu- 
ing, and it is shown that the gyro indicates yaw position. The gyro is then 
inserted in the yaw attitude control loop of a vehicle in circular orbit. The 
stability characteristics are studied, and analog time histories illustrate the 
system dynamics and yaw sensing characteristics of the gyro. The ability of the 
two-degrees-of-freedom gyro to indicate large yaw-angle offsets and to supply 
stabilizing information to the vehicle for these angles is described. Finally, 
a comparison is made between the performance of a twc-degrees-of-freedom gyro- 
scope and a roll-rate gyroscope as used in the vehicle yaw control loop. The 
two-degrees-of-freedom gyroscope shows considerable improvement over the roll- 
rate gyroscope. 

INTRODUCTION 

Active control to keep an axis of a satellite vehicle pointed along the 
vertical direction toward the earth poses no fundamental problem. Horizon sen- 
sors afford roll and pitch error signals that are adequate, at least in principle, 
to control a vehicle's vertical alinement. The situation, however, is different 
for yaw. Here it may be desired to keep an axis of the vehicle heading in the 
orbital plane more or less along the velocity vector. 

Some methods for controlling or determining this yaw heading angle proposed 
and analyzed in the past have depended for their success on the orbital angular 
momentum or angular velocity coupling inherent in a vertically oriented satellite. 
The angular momentum of the vehicle so couples its yaw and roll modes that motion 
about one axis is a function of motion about all axes. If zero roll rate is 
maintained by some means, then a roll-rate gyro reads the component of the 
orbital angular velocity in proportion to the magnitude of the yaw angle. This 
method of determining vehicle yaw attitude may often be sufficient to satisfy a 
particular requirement, but it is not entirely satisfactory for all systems. 

The present paper considers another method of determining yaw attitude for 
use in an earth pointed satellite. In place of a rate gyro mounted with its 
sensitive axis along the vehicle's roll axis, a two-degrees-of-freedom gyroscope 
is considered with its spin axis parallel to the orbital angular momentum vector. 
Success of the method depends on using a vertical reference to maintain the 
gyro's inner gimbal in the local horizontal plane. Then the gyro acts like a 



gyrocompass, alining its spin vector in a stable position with the orbital angu- 
lar momentum vector. The gyro is statically stable and self-alining. The yaw 
angle measured by the outer gimbal angle can also be used by a control system to 
maintain a desired vehicle yaw angle. 

The report describes the two-degrees-of-freedom gyro system and its per- 
formance in the control loop of an orbiting vehicle. The response of the gyro 
is first studied as a separate unit, but under the influence of gimbal angle and 
torquing terms. After the behavior of this isolated orbiting system has been 
described, the response of the over-all system is determined. Finally, a compar- 
ison of the vehicle behavior under command of the two-degrees-of-freedom gyro is 
compared to that under command of the roll-rate gyro system. 

NOTATION' 

Reference Frames 

All of the following are orthonormal right-hand sets. 

bk 

gik 

iz 
Ok 

'k 

rk 

vehicle principal axes: bi roll axis, Gz piLch axis, bs yaw axis 
(For an ideal stabilization system b, =Oi, b2 =gz, and cs, '8s.) 

inner gimbal axes, gi 
1 = g", 

outer gimbal axes, go 
3 

= c-3 

orbital axes system 
(53 is in the orbital plane and directed radialLy toward the 
earth's center from the vehicle center of mass, O2 is normal to 
the orbital plane, and Oi is in the direction of flight path for 
a circular orbit.) 

rotor axes, G-2 = gi 
2 

System Variables 

All angles correspond to right-hand rotation. 

Ci,Co gyro damping coefficient of inner gimbal and outer gimbal, respec- 
tively 

cr roll-rate gyro damping coefficient 

h rotor momentum about its spin axis, Fz for both the two-degrees- 
of-freedom gyroscope and roll-rate gyroscope, 12,8, 

'k principal moments of inertia of satellite about satellite center 
of mass as measured in the b reference frame 

'Refer to figure 1. 
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Ikg 0 

Ikr 

%J% 

Kl 

K2 

K3 

kf 

MTG 

S 

T rnk'T,JTd 

wq 

w+ 

eg 

ei 

e. 

er 

he ,(p 

wkgi 

wkgo 

principal moments of inertia of gyro inner gimbal about gimbal mass 
center as measured in the gi reference frame 

principal moments of inertia of gyro outer gimbal about gimbal mass 
center as measured in the go reference frame 

principal moments of inertia of gyro rotor about gyro rotor mass 
center as measured in the r reference frame 

moments of inertia of the roll and yaw reaction wheels, respectively, 
about their axis of rotation 

signal gain on roll reaction wheel 

signal gain on gyro spring 

signal gain on yaw reaction wheel 

spring constant of roll-rate gyroscope 

control torque to inner gimbal 

Laplace operator 

time constants associated with reaction wheel control systems 

angular speed of the roll reaction wheel about bl 

angular speed of the yaw reaction wheel about ce 

angle orienting roll-rate gyro gimbal with respect to its case 

angle orienting the inner gimbal with respect to the outer gimbal 
(angle between vectors gi and go ) 

2 2 

angle orienting the outer gimbal with respect to the body (angle 
between vectors go1 and ??I, 

angle orienting the rotor with respect to the inner gimbal (angle 
between vectors i?I and g- ) 11 

Euler angles orienting % frame with respect to 6 frame 
(Order of rotation is as shown.) 

components (scalar) of the angular velocity in inertial space of the 
vehicle as measured in the i; reference frame 

components (scalar) of the angular velocity in inertial space of 
the inner gimbal as measured in the gi reference frame 

components (scalar) of the angular velocity in inertial space of 
the outer gimbal as measured in the go reference frame 
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-.. 
I 

wkr 

wO 

b 

gi 

go 

k=i,2,3 

0 

r 

components (scalar) of the angular velocity in inertial space of the 
rotor as measured in the F reference frame 

scalar magnitude of the inertial angular velocity of the 0 frame 
(The vehicle orbit is planar.) 

Subscripts 

vehicle principal axes 

inner gimbal axes 

outer gimbal axes 

axes system components 

orbital axes system 

rotor axes 

mALYSIS OF A TWO-DEGmES-OF-FREEDOM GYROSCOPE 
AS A SATELLITE YAW ATTITUDE SENSOR 

Consider a two-degrees-of-freedom gyroscope mounted in a circular orbiting 
vehicle. The gyro does not affect the body by its momentum, nor does it send 
any information to the vehicle's control system. The gyro is, however, suscep- 
tible to vehicle motion and therefore may indicate yaw attitude. Assuming small 
angles and the momentum contribution of the rotor and gimbals inertia to be neg- 
ligible (ref. l), one obtains from the appendix equation (Al9) 

h(W3b + Woei + ~,)gi : 0 1 
Equation (1) is for a free inner gimbal. The first term on the left is the 

input to the inner gimbal axis, which is the vehicle inertial yaw velocity. The 
second term is an inertial coupling developed from the component of orbital rate 
along the inner gimbal axis. The third term is due to gyro precession and 
couples outer gimbal motion into the inner gimbal dynamics. 

Equation (A28) gives the expression of a free outer gimbal: 

-hcwlb - Woe0 + 6-i); 
03 

:o (2) 

A similar explanation of the terms as given before applies here. Linearization 
eliminates pitch terms from the gyro equations. 

Equations (1) and (2) describe a free gyro. These equations may be easily 
solved, and 8i shown to indicate cp and 0, to indicate $ if the gyro is 
initially alined. The device represented by the equations is hypothetical and 
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useless for control since it is unda.mped, so damping proportional to gimbal 
rotational rate is introduced. Also, the frequency of the gyro oscillation is 
at orbital frequency. This characteristic is undesirable since the gyro should 
respond rapidly to vehicle dynamics, enabling the gyro to establish a position 
in space which can then supply information to the control system. These fre- 
quencies can be separated by an electrical spring placed between the inner and 
outer gimbals. However, orbital coupling is such that 8, is not only a func- 
tion of Jo, but also of cp. Therefore, a method is needed for decoupling the 
roll and yaw modes. This decoupling can be realized if the inner gimbal is 
constrained to lie in the plane of the local horizon. For this it is necessary 
that the inner gimbal be torqued as a function of its position with respect to 
the local vertical. If an electrical spring were used in combination with a 
vertical reference the signal to a gimbal torquing motor would be 

%G = -Kz(T f ei) (3) 

where K2 is the spring constant. With the inner gimbal in the plane of the 
local horizon, the outer gimbal provides a yaw reference. The presence of the 
roll sensor contributes little to stability for small yaw angles but does affect 
the transient behavior. 

The torquing term (eq. (3)) and inner and outer gimbal damping, Ci and Co, 
respectively, are included in the final gyro equations 

h(Wsb + Woei + ii,) = -Ciei - K2(Bi + up) (4) 

and 

-h(Wlb - woe0 + ii) = -c,8, (5) 

The solutions to equations (4) and (5) for f3i and 8, are 

(-hS2 - hW,C,S - K2CoS - h2w02 - hW,K& - hCoS2+ 
ei = '(TiEi + h2)S2 + (hWoCi + hWoCo + K2Co)S + (h2W02 + hW,K2) 

and 

80 = - -~~ 
hCiS2q + (-h2S2 - hCiWoS - h2W02 - hK,Wo)$ 

(CiCo + h2)S2 + (hWoCi + hWoCo + K2Co)S + (h2W02 + hWoK2) 

(6) 

(7) 

Several significant results are evident from equations (6) and (7). The 
spring appreciably changes the frequency of the gyro system to greater than 
orbital frequency. Cuter gimbal damping is very critical-to gyro damping since 
the spring constant will generally be much larger than hwo. The term CiCo 
in the coefficient of the S2 term in the denominator of equation (7) is negli- 
gible compared to h' for small Co. An examination of equations (6) and (7) 
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shows that in the steady-state conditions, if higher order effects are neglected, 
8 i, the inner gimbal angle, indicates cp, and 8,, the outer gimbal angle, indi- 
cates $. 

ANALYSIS OF A SATELLITE ATTITUDE CONTROL SYSTEM INCORPORATING 
A TWO-DEGREES-OF-FREEDOM GYROSCOPE 

Description of Physical System 

The study will assume that a vehicle is orbiting in a circular, planar, and 
nonprecessing orbit. It is required that the vehicle be earth pointed at all 
times. Roll and pitch positions can be sensed and controlled by signals from 
horizon scanners. Yaw position will be determined by a two-degrees-of-freedom 
gyroscope as explained in the previous section. Vehicle control is accomplished 
by transmitting vehicle momentum to reaction wheels where it is then dissipated 
in the orbit by gravity torques. The speed of the reaction wheels are controlled 
by the vehicle's attitude relative to the orbit. 

The Equations of Motion 

The equations of motion of an orbiting body are given in references 2 and 3. 
The equations of motion of the vehicle are linearized with small-angle approxi- 
mations 

sin 0 = 8 

cos 8 = 1 

and higher order products are considered negligible as is the contribution of 
gyro momentum to the total vehicle momentum. Under these conditions the pitch 
equation for the vehicle is uncoupled from the system and need not be considered. 
The linearized equations are as follows: 

. IIWlb = -3wo 2(12 - I3)(p - u&2 - Idw3b - $&J + wO1qw\lr (8) 

. . 
bW3b = w0(12 - ‘dWlb - w&+,wq - I$‘$ 

where 

. 
w3 b = * + wo'p 

00) 

(11) 



Equation (8) describes the dynamics of the vehicle about its roll axis. The 
first term on the right side of equation (8) represents gravity torques. The 
second is an inertial coupling moment developed from vehicle yaw rate and the 
orbital rate. The last two terms are due to the effect of reaction wheel torques 
associated with the control system of the vehicle. Equation (9) describes the 
dynamics of the vehicle about its yaw axis. The first term on the right side of 
equation (9) represents an inertia coupling developed from vehicle roll rate and 
the orbital rate. The last two terms are due to the effect of reaction wheel 
torques associated with the control system of the vehicle. Equations (10) 
and (11) define the inertial angular velocities of the vehicle in terms of Euler 
angles where w. is chosen in the negative sense. 

The part of the vehicle control system considered here consists of two 
reaction wheels, one mounted with its spin axis alined with the body roll axis 
and the other with its spin axis alined with the body yaw axis. The speed of 
the roll wheel is controlled by a roll position sensor. The speed of the yaw 
wheel will be controlled by Go, the angle orienting the outer gimbal with 
respect to the vehicle. The equations describing the vehicle control system are 
as follows: 

WY = Ki 
TnS + 1 1 
Tds + 1 T,S + 1 ' 

1 
“k = -K3 Tm3S + 1 ‘O 

(12) 

Equation (12) describes the roll control system and equation (13) describes 
the yaw control system. The symbols T, represent the time constants of the 
motors associated with the reaction wheels; T, and Td, the parameters of an 
ordinary passive lead-lag network; and K the gains of the control system. 

At this point it is convenient to summarize the equations which will be the 
basis for study in this report. 

. . 
hw+, = -3w0 '(I2 - 1~)~ - wo(12 - 13)W3b - hwq + wol~w+ (14) 

13&b = wo(12 - Ii)Wlb - woIcpwcp - I@$ (15) 

Wq = Ki 
TnS+l 1 
Tds + 1 TmlS + 1 ' 06) 

W+ = 43 T sl+ 1 8, 
m3 

(17) 
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h(wsb + woei + 6,) = Xiii-Kz((P + ei) (18) 

-h(ii + Wlb - W&O) = -Cob0 (19) 

A block diagram of equations (14) through (19) is shown in figure 2. 

Previously, the two-degrees-of-freedom gyroscope with roll attitude input 
was analyzed independently of the vehicle control system. This modified gyro- 
scope will now be analyzed when the sensed yaw attitude error is used in the 
closed loop of the vehicle to control the speed of the yaw reaction wheel. The 
effect of the modified gyro on over-all system stability and the ability of the 
gyro to sense yaw will be determined. 

Consider equations (14) through (19). We shall determine the characteristic 
function of this set of equations. A useful and good assumption to be employed 
in an analytical study of orbiting bodies with inertias on the order of magnitude 
of the vehicle considered here is to equate roll and pitch inertias or I1 and I2 
(ref. 4). It should be mentioned that this assumption is used only in the ana- 
lytical formulations of this section and not in machine computations. 

Assuming Ii = 12, substitute equations (lo), (ll), (12), and (13) into 
equations (14) and (15). From the Laplace transform of the resulting equations, 
the equations may be written in matrix form as follows: 

T,S+l s 
11s' + 4w,"(12 - 13) + 4pKr - ~ +J&S 0 %IqKzt 

Tds + 1 TmlS + 1 T 
% 

TnS+l 1 
13w,S + w&Kl - ___ TdS + 1 T,,,$ + 1 

1&i* 0 
-IqK3S 

T %3 

hw, + K> hS CiS i hWo + K2 hS 

hS -hwo hS -C& - hw, 

=o 

Denoting the coefficient matrix of equation (20) by M, we obtain: 

-0 

(20) 

(21) 

Equation (21) may be mapped to a more convenient form by the following 
operations 



The product of the third and fourth matrix of equation (22) is the identity 
matrix which does not alter the coefficient matrix M. The first matrix will 
therefore have no effect on the product of the remaining matrices since their 
product is the null matrix. The first three matrices may be combined to form a 
new coefficient matrix. The last two matrices when combined form a new state 
variable matrix. Equation (22) becomes 

L%S + qq& 
T&+1 1 IvK, 

13s + T 0 
-QK,S 

TdS + 1 TmlS + 1 %! Tm3S + 1 

\ 

hw, + k, 0 

hS w 

CiS + hwo + K2 hS 

hS -C,S - ha0 

cp 

v 

I 

=o 

ei 

v + e. 

(23) 

The coefficient matrix of equation (23) is also the determinant describing 
the stability characteristics of the system. Evaluating this determinant we 
have 

[H(S) + I$W(S)l[M(S)N(S) -I,$W,R(S)] (24) 

where 

H(S) = (IiS + 4w0212 - 3w021s)(Tm1S + l)(TdS + 1)s 

G(S) = (T,S + l)(S2 + wo2) 
1 

M(S) = (13Tm3S2 + IsS + KsIv) ) (25) 

N(S) = (CiCo + h?)S2 + [hWo(Ci + Co) + K2Co]S + h2W02 + hWoK;I 
I 

R(S) = (CiS + hWo + K2)S 

The terms within the brackets on the left side of expression (24) are 
related, with the exception of the pitch and yaw vehicle inertias, to the param- 
eters of the vehicle roll dynamics. The terms within the brackets on the right 
are related to the parameters of the vehicle yaw dynamics and the gyro dynamics. 
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Thus it appears that equating the roll and pitch inertias has effectively sepa- 
rated the system roll and yaw-gyro modes. The roll mode is of little interest 
here. A more detailed discussion of this mode is available in reference 4. Only 
the yaw-gyro mode is of interest here. 

If Co = 0, the second factor in expression (24) can be separated into two 
factors which describe the stability characteristics of the yaw mode and the gyro 
mode since each factor contains only terms relating to the stability of its own 
mode. Therefore, Co produces a coupling effect between the vehicle and gyro, 
as would be expected. 

The effect of outer gimbal damping, Co, can be demonstrated by a numerical 
example. Assume the following values in which the vehicle inertias and altitude 
are typical of the Nimbus meteorological satellite: 

*m3 
= 38.5 set 

13 = 120 slug-f@ 

Ci = 22.13x10W4 slug-ft2/sec 

K2 = 22.14x1O-4 slug-ft2/sec2 

h = 44.25~10~~ slug-ft2/sec 

WO = 0.9725~10-~ radian/see 

I* = 0.00212 slug-fta 

K3 = 1000 see-1 

c '0 = 0 and 0.44~10-~ slug-ft2/sec 

For the first case, Co is chosen as 0. This choice uncouples the yaw and 
gyro modes. For the second case Co is chosen l/50 the size of Ci. This 
choice introduces slight coupling between the two modes and K2 is chosen suf- 
ficiently large to emphasize the effect of Co. The term CiCo < < h2. 

Decoupled case (Co = O).- Here one has simply: 

[S2 + (l/*m,)S + (KsI+/IsTm,) 1 [S2 + (uoCi/h)S + (h2w02 + K2wo/h)] (26) 

or when numerical values are substituted 

Yaw mode Gyro mode 
f A 
(s2 + 0.026s + 0.46x10-~ (27) 

Consider the gyro term. The damping ratio and frequency are 

p = 0.0111 and q, = 2.2~10~~ radian/see 

Coupled case (Co = O.44XlO-4).- Substituting numerical values in the yaw- 

gyro term of expression (24), one has: 

s4 + 3.13x10-~s~ + 1.08x1C3S2 + o.1485x10-4S + 222~10-~ (28) 
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One obtains upon factoring expression (28): 

Yaw mode 
A 

Gyro mode 

'(s2 + 0.026s + 0.46xlo-~)‘~(s~ + 0.53~10-~s + 0.48~10-~) (29) 

The yaw mode remains unchanged. The frequency of the gyro mode is 
unchanged, but the damping is increased by a factor of 10. 

The analog time histories in figures 3 to 5 illustrate the transient 
behavior of the vehicle when the two-degrees-of-freedom gyro is used in the yaw 
control loop. In each set of time histories the first two describe vehicle 
motion with respect to the orbital axes. The second two describe the indicating 
performance of the gyro. Since the inner gimbal angle is supposed to indicate 
the negative of roll position and the outer gimbal the negative of yaw position, 
the quantities cp + 8i and $ + 8, should become zero as rapidly as possible. 

Figure 3 is the time history for the gyro with no outer gimbal damping but 
with a light spring. This case is identical to the decoupled case discussed 
above except the spring is one-tenth as large. Figure 4 illustrates the 
decoupled case discussed above. This system shows considerable improvement over 
the system with a light spring. Figure 5 illustrates the coupling case pre- 
viously discussed. This introduces outer gimbal damping to the gyro and again 
considerably improves over-all system performance. The value of inner gimbal 
damping was the same for the three figures. The time histories use the values 
of vehicle inertia given in table I and do not equate roll and pitch inertias. 
Analog studies in which the inertia values in table I are used correspond well to 
the analytical analysis which equates the roll and pitch inertias. 

An examination of expression (24) shows that an undamped gyro mode exists 
if there is no damping on either the inner or outer gimbal and that the gyro 
mode can be damped if only inner gimbal damping is provided. Utilizing Routh's 
criterion one can also show that it is possible to stabilize the system with 
outer gimbal damping only. Equations (27) and (29) indicated the need for damp- 
ing on both gimbals since the 'gyro mode was poorly damped with inner gimbal 
damping only. 

Within a given range of control system gains the effect of gyro parameters 
can be studied by considering the denominator of equation (6). From this equa- 
tion it is readily seen that Co has an important effect on gyro damping and 
has the effect of coupling K2 into the damping term with negligible effect on 
the frequency of the gyro mode. Small increases of Co will greatly improve 
stability characteristics. However, using Co to improve system performance 
makes the gyro system more responsive to body motions. Thus Co, while having 
advantages, does have limitations and cannot be freely varied. 

The indicating ability of the gyro is a direct function of the ratio of the 
gyro spring constant to the vehicle control system gain. The high-frequency 
motion of the vehicle induced by a high gain control system cannot be indicated 
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by the gyroscope. This oscillation, however, manifests itself for only a rela- 
tively short duration and the frequency of the vehicle dynamics is then approxi- 
mately orbital frequency which is easily indicated by the gyro. 

DISCUSSION 

The preceding portions of the report have been concerned with the analysis 
of a two-degrees-of-freedom gyro as a satellite yaw sensor and its subsequent 
use in the yaw control system of an orbiting vehicle. There are several items 
relative to the two-degrees-of-freedom gyroscope which should be mentioned and 
briefly discussed. 

The Two-Degrees-of-Freedom Gyroscope as a Satellite Yaw Reference 

The two-degrees-of-freedom gyro has been shown to be a satisfactory yaw 
sensor. However, the analysis was confined to small-angle measurements from the 
orbital plane. Since it is occasionally desirable to slew an orbiting earth- 
pointed vehicle to a yaw position offset, the effect of large yaw angles on sys- 
tem stability and the ability of the gyro to indicate yaw attitude error are of 
interest. 

It can be shown analytically that the gyro will indicate the position error 
of a positionally offset vehicle for large vehicle yaw angles. It is necessary 
to determine whether stability is maintained at large offset angles. 

The values given in table I were used with Ci = 22.13x10W4, Co = 0.44x10W4, 
and K2 = 22.14~10~~ to study the stability of the vehicle for offset angles rang- 
ing from O" to 90°. The pitch mode was stabilized by a control system identical 
to the roll control system with pitch position controlling the reaction wheel 
speed. The system remained stable without a modified motor torque generator for 
values of offset angles as great as 60’. Offset angles greater than 60’ would 
require that the motor torque generator signal be modified by the introduction 
of a separate pitch signal to compensate for pitch error developed by the offset. 

A Comparison Between the Performance of a Two-Degrees-of-Freedom 
Gyroscope and a Roll-Rate Gyroscope 

It has been proposed that a roll-rate gyroscope could be used in orbiting 
earth-pointed vehicles to supply yaw attitude information to the yaw control sys- 
tem. A block diagram of a vehicle using a roll-rate gyro is shown in figure 6. 
A complete study of the performance of the roll-rate gyro in an orbiting vehicle 
is available in reference 4. The performance of the proposed two-degrees-of- 
freedom gyro can be compared with a roll-rate gyro. Figure 7 illustrates the 
performance of a roll-rate gyro system which can be compared with the two- 
degrees-of-freedom gyro system in figures 3 through 5. For the comparison, the 
total gain on yaw position error obtained from the roll-rate signal for the roll- 
rate gyro was equal to the gain on the outer gimbal angle used to control the yaw 
control system for the two-degrees-of-freedom gyro or in equation form 
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Roll-rate gyro gain = K3 
hwo + kf hw 

0 
(30) 

The rotor momentum of the roll-rate gyro is the same as that of the two-degrees- 
of-freedom gyro. The ratio Cr/h for the roll-rate gyro is 0.5. The two- 
degrees-of-freedom gyro shows a definite improvement over the roll-rate gyro. 
The difficulty with the roll-rate gyro system is that it produces primarily a 
roll-rate signal in combination with a yaw-position signal caused by coupling. 
The presence of the large roll-rate signal from the roll-rate gyro greatly 
decreases the performance of this system. The two-degrees-of-freedom gyro sys- 
tem, however, essentially nullifies the effect of the roll-rate term by convert- 
ing roll position to roll rate where it cancels the roll-rate signal from the 
gyro * The roll-rate gyro system illustrated in figure 7 has large overshoots 
and is considerably less damped than the two-degrees-of-freedom gyro system. 

Drift 

The causes of drift are many (ref. 5), for example, gravity torques, solar 
torques, and gyro structural irregularities. A detailed study of the sources 
and mathematical description of drift are beyond the scope of this report but 
its effect on the steady-state conditions of the vehicle is of interest. 

Assume that the gyro experiences a drift-producing torque, thus producing 
an unknown offset in combination with the desired signal. The effect on the 
steady-state position of the vehicle axis with respect to the orbital axis can 
be determined from the equations at ste?dy state. Let h~di represent a con- 
stant torque on the inner gimbal and hQdo a constant torque on the outer gim- 
bal. The steady-state equations of equations (14) through (19) with the addition 
of the constant gyro torques become 

0 = -4w02(12 - 13)(p + woI$W$ 

0 = -wo2(12 - Ir)+ - WOIVWV 

0 = -Wo’p - Woei + Q/h(+i - Cp) + bdi 

0 = wo+ + woe0 + ido 

wo = Kl(P 

W,j, = -K38, 

(31) 

Solving equations (31) for cpss and qss, the steady-state values of roll 
and yaw positions,respectively, one obtains . 

E 11 - 17 
'pss - 

edo 
IvKl 

ido and $ss g - 
WO 
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Observe that these values are independent of the torque on the inner gimbal 
angle. Assuming a torque producing a gimbal rate of 2O/hr and using the vehicle 
parameters given in table I, one obtains the following steady-state errors. 

cp ss = 0.01' and $ss = 0.55" 

It should be mentioned that the same drift-producing torque assumed here when 
applied to a roll-rate gyroscope produces an identical yaw attitude offset. 

CONCLUSIONS 

1. Use of a two-degrees-of-freedom gyro and a vertical sensor provides 
adequate information for three axis stabilization and control of a vertically 
oriented satellite. The system allows the heading for yaw of the vehicle to be 
maintained at any desired value. 

2. If yaw angles less that 60' from the orbital plane are desired, vehicle 
pitch compensation is not required for control of the gyro's inner gimbal. 

3. As a yaw nulling device, a system using the two-degrees-of-freedom gyro 
gives performance superior to that of a system using a roll-rate gyro. 

4. System performance is an important function of the inner and outer gim- 
bal damping (Ci and Co, respectively) and gyro rotor momentum, h. If the damp- 
ing and momentum are small, it is necessary to consider the high frequency modes 
which are otherwise negligible. If the gyro momentum, h, becomes too large, the 
gyro will become a source of torque to the vehicle as well as a sensor. 'Ihe 
damping and momentum should be selected to avoid these extremes. 

5. The sensing ability of the two-degrees-of-freedom gyroscope is improved 
by increasing the frequency of the gyro relative to the frequency of the vehicle. 

6. The effect of a drift-producing torque on the two-degrees-of-freedom 
gyro system is the same as on a roll-rate gyro system. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., Oct. 23, 1963 
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DERIVATION OF EQUATIONS OF MOTION OF A 

TWO-DEGREES-OF-FREEDOM GYROSCOPE 

(The derivation presented here is substantially based upon unpublished 
methods compiled at Ames Research Center by J. S. Pappas, K. C. Grover, and 
V. K. Merrick.) 

Using right-hand orthonormal systems and referring to figure 1, we may 
define the relationships between the components of the gyro and the body. Con- 
sider the rotation of a coordinate system, F, fixed in the rotor, with respect to 
a coordinate system, gi, fixed in the inner gimbal. This rotation may be defined 
by a matrix: 

where s = sine and c = cosine. The velocity relationship of the rotor and 
inner gimbal with respect to inertial space is 

. - 

where 

wr vector inertial angular 

5 
gi 

vector inertial angular 

;rEi vector angular velocity 
2 

w =E r gi + Oj+i 
2 

velocity of the rotor 

velocity of the inner gimbal 

of the rotor relative to the inner gimbal 

(Al) 

(A2) 

The inner gimbal is free to rotate with respect to an outer gimbal. If 
g, is a coordinate system fixed in the outer gimbal, one has 

@3) 

where the velocity relationship of the two frames with respect to inertial space 
is - . - 

wgi 
:w 

go + *igo, 
(A41 

where 

w go vector inertial angular velocity of the outer gimbal 

angular velocity of the inner gimbal relative to the outer gimbal 

15 
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Finally, the outer gimbal is free to rotate with respect to the body. This 
rotation is defined by the matrix: 

(!;I = [:I :;I 3 () (A5) 

where the velocity relationship of the outer gimbal and body with respect to 
inertial space is 

where 

w 
go 

=w b + &,i;, (-46) 

73 b vector inertial angular velocity of the body 

. - 
Q&3 vector angular velocity of the outer gimbal relative to the body 

It is desirable to summarize the scalar relationships implied by the pre- 
vious work. The scalar components of the inertial velocities of the inner and 
outer gimbal are expressed in terms of the scalar components of the inertial 
velocity of the body. Written in matrix form they are 

and 

where 

W1b 

W2b 

W3b 

16 

b.7) 

Lw 

scalar component of the angular velocity in inertial space of the body 
with respect to its roll axis 

scalar component of the angular velocity in inertial space of the body 
with respect to its pitch axis 

scalar component of the angular velocity in inertial space of the body 
with respect to its yaw axis 



The derivation of the scalar components of the inertial velocity of the 
body in terms of the Euler angles of the body with respect to the orbit is not 
given in this report, but is only summarized here for small angle deviations. 
They are 

. 
Wlb = cp - wo+ (A91 

. 
WZb = 0 - w. (AlO) 

. 
W3 b = 4J + woo (All) 

The two-degrees-of-freedom gyro contains three dynamical modes. The first 
describes the rotation of the rotor with respect to the inner gimbal and con- 
tains no information for a constant speed and axial symmetrical rotor. The 
second is the rotation of the inner gimbal with respect to the outer gimbal. 
Consider the axis system of the inner gimbal, gi, as a reference. The total 
angular momentum of the rotor and inner gimbal may be expressed in vector form. 

ii inner gimbal system 
=g 

inner gimbal + 'rotor 

Expanding 

HIGS = Tg * Tl 
i gi 

+ Tr * zr 

(A12) 

(Al3) 

Further expansion in terms of matrices and neglecting products of inertia yields 

0 0 Isr / 

Transforming all terms of this equation 
assuming I+ = I+, one obtains 

HIGS = 
( 

I1 gi + Ilr 
> wlgi E- 11 + 

+ gi + I+ W3 Ei 
> gi 3 

i-1 1‘3 
i / 

W- ar 

to the inner gimbal frame, gi, and 

r L12giwpgi + 12Jw2gi + QlllG2 

(A15) 
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The time derivative of this expression is 

. if IGsei axis = L\I~gi + 11-r) &lgi + (13gi - 12gi + I3r - I2r) w2giw3gi - ha3gi]&.l v 1 
= [External torques 

Labout gi 1 E- axis i1 
1 

(A16 > 

Only the "i, component need be considered since the g- 
12 

and g. 
13 

axes have no 
gimbaled freedom. If the momentum contribution of the gimbal and rotor inertias 
are negligible and small angles are assumed, one has upon substituting the value 
of w3 gi from equation (A7) into (A16) 

-h(%b f *oei f eo>gi = 
External torques 

1 about 
gi, axis 1 

c-417 > 

Vehicle stability considerations will indicate the necessity of a negative h 
or 

hb3 
External torques _ 

b + woei + iO)gi = 1 about 
gi, axis gi, 1 w3 > 

If the inner gimbal is free, the right side of equation (A18) is 0 or 

hb3b + WoOi i- io)g- 11 
=c (Al9) 

The third dynamic mode is the rotation of the outer gimbal frame with 
respect to the body. Consider the outer gimbal axis system g7, as a reference. 
!The total angular momentum of the rotor, inner gimbal, and outer gimbal may be 
expressed in vector form: 

ii outer gimbal system = Hrotor + if. inner gimbal +K outer gimbal (A201 

EXpanding 

FOGS = q * cir + Tgi l cigi + i - iz- 

go go 

(A20 

Further expansion in terms of matrices and neglecting products of inertia 
yields 
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(A=) 

Transforming all terms of this equation to the outer gimbal frame, zo, one 
obtains 

ZOGS = 

+ 13giC2Qi) w3go + (12r - II.,> (w2go + ;rcoi) seicei 

f f I+C28i 
>( 

W3g 
0 

+ 8pSQi Lj 
03 

l-423 > 
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Assuming small angles one obtains 

i ( 
. 

FOGS = 11 wig + go 0 Ilg i + 11, > 
l W1 + ei )I Eo, 

+ K I2 go + I2 g* w2go 3 
+ II. t2., + iir)lgo2 

‘\ . 
+ 13 

gi 
+ 13 go w3go / 

+ 12rerei 

- 
( 

I2 
gi 

- I3 
gi 

+ 12r - Isr > 1 W@i g", (-424 1 

Taking the time derivative with respect to inertial space, one obtains for the 
PO3 component of f?OGS 

. 
iToGSgo3axis = 

gi + bgo) bzgo .[,- (IBgi- ISgitI+ - I+) wo]ei 

+ 
0 

+ 12g + 12r- Ilg - -wow1 
i 

bt 
0 

Ilg 
i 

wo2eo) + hwlgo) g", 

: External torques 
about go 1 g 

axis o3 
3 

hQ5) 

Only the zo3 need by considered since the g 
01 and go axes have no gimbaled 

freedom. If the momentum contribution of the gimbal an2 rotor inertias are 
negligible, one has upon substituting the value of w1 go from equation (~8) into 
equation (A25) 

h(wlb - woe0 t 6i)Eo3 = iExternal torques 
L about go I 

; 
3 axis 03 

(A2t ;) 

A negative h changes this equation to 

-h(wlb - woe0 + 6i)Eo3 = 
! 

ELxternal torques;- 
about go axisjgo3 (A27 

3 

If the inner gimbal is free, the right side of equation (A27) is 0 or 

-h(wib - woe0 + ei)io, = 5 (~28 > 
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TABLE OFVALUES 

(Vehicle inertias and altitude are typical of the Nimbus 
meteorological satellite) 

11 = 190 slug-f+ 

I2 = 146 slug-ft2 

I3 = 120 slug-f-@ 

Iv = 0.00212 slug-ft2 

I$ = 0.00212 slug-f@ 

H = 60,000 dyne-cm-sec/radis:l = 44.25~10'~ slug-ft2/sec 

wO = O.g725XlO'3 radian/see 

Tn = 7.0 set 

Td = 0.7 set 

T 
ml 

= 38.5 set 

Tm 3 
= 38.5 see 

Kl = 1000 see-l 

K3 = 1000 see-l 

Time constant of roll-rate gyro = 0.2 set 

The values of other parameters are stated as needed. 
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y Outer gimbal 

45 A Portion of satellite 

Figure l.- Two degrees of freedom gyroscope showing position of reference frames 
and identification of gyro angles. (All axes systems have origin at center 
of mass of gyro, but are displaced for clarity.) 
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Roll axis control system 

I 

Horizon Tn S+I +K,+,--, I w# 
scanner Td s+I T,, S + I 

‘0 \-K I WJI 
3 F 

Tm3StI 
1 I I I 

Y 

Yaw axis control system 

I 

! 
I,;,;-3u~(I,-I,) + -w. (I*-13)w3; I+i+ + uoI,+ W,p 

13;3b= W,(I,-I, 1 QJq QJoIpw&~ 

Vehicle equations 

Two degree of freedom gyro 

t 

cl 
- 

Figure 2.- Block diagram of system and associated control system using a two degrees of freedom 
gyroscope as a yaw sensor. 



50 100 150 200 
t, minutes 

(a) Initial yaw error. 

Figure 3.- Time history of attitude. Gyroscope damped about inner gimbal only 
with light restoring moment command to inner gimbal; Ci/h = 0.5, Kz/h = 0.05, 
Co/h = 0. 
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(b) Initial roll rate error. 

Figure 3. - Continued. 

26 



-5 

5 

!z 

; 0 1 --- 

5 I es6 -. ~. ~ ~~ 50 I-.- .~.._ 100 I I50 I 200 1 

t, minutes 

(c) Initial yaw rate error. 

Figure 3.- Concluded. 
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(a) Initial yaw attitude error. 

Figure 4.- Time history of attitude. Gyroscope damped about inner gimbal only 
with high restoring moment command to inner gimbal; Ci/h = 0.5, K2/h = 0.5, 
Co/h = 0. 
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(b) Initial roll rate error. 

Figure 4.- Continued. 
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(c) Initial yaw rate error. 

Figure 4.- Concluded. 
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(a) Initial yaw attitude error. 

I 
200 

Figure 5.- Time history of attitude. Gyroscope damped about inner and outer 
gimbal with a high restoring moment command to inner gimbal; Ci/h = 0.5, 
Co/h = 0.01, K2 = 0.5. 

31 



5 - 

g0 
-6 

-5 I I 

zr 
2 0--- 

5 

-5 I I ~- _i .I - 0 50 100 150 200 
t, minutes 

(b) Initial roll rate error. 

Figure 5.- Continued. 
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(c) Initial yaw rate error. 

Figure 5.- Concluded. 
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scanner T., S+I T,.,,,S+l 

- L A \ v / 
Yaw axis control system 

L 

I,;,;-3~; (I,-13)~-w,(I,-13)W3bI~~9+~OISW~ 

13d3b.W,(I~-I,)W,bWgI~W~-Illr~~ 

Vehicle equations 

Roll rate gyro 

Figure 6.- Block diagram of system and associated control system using a roll rate gyroscope as a 
yaw attitude sensor. 
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(a) Initial yaw attitude error. 

Figure 71- Time history of vehicle attitude. Roll rate gyroscope system. 
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(b) Initial roll rate error. 

Figure 7.- Continued. 
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(c) Initial yaw rate error. 

Figure 7.- Concluded. 
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